The two-click* reproduction matrix below provides commands for reproducing experimental results reported in a number of papers, denoted by the references in square brackets. Instructions for programmatic execution are shown at the bottom of this page (scroll down).
Multi-Pass | First-Stage Method | Top-k | TREC 2021 | TREC 2022 | TREC 2023 | ||||
---|---|---|---|---|---|---|---|---|---|
nDCG@10 | nDCG@10 | nDCG@10 | |||||||
[1] | Monot5 3B MSMARCO-10k | - | BM25 | 100 | 0.6682 | 0.4954 | 0.4502 | ||
[1] | Duot5 3B MSMARCO-10k | - | BM25 | 100 | 0.6951 | 0.5158 | 0.4600 | ||
[1] | Lit5Distill Large | - | BM25 | 100 | 0.6671 | 0.5102 | 0.4578 | ||
[1] | RankVicuna 7B V1 | - | BM25 | 100 | 0.6194 | 0.4336 | 0.3988 | ||
[1] | RankZephyr 7B V1 - Full | - | BM25 | 100 | 0.7016 | 0.5152 | 0.4373 | ||
[1] | First Mistral | - | BM25 | 100 | 0.6849 | 0.4893 | 0.4470 | ||
[1] | Qwen 2.5 7B Instruct | - | BM25 | 100 | 0.6358 | 0.4186 | 0.3925 | ||
[1] | LLaMA 3.1 8B Instruct | - | BM25 | 100 | 0.6390 | 0.4517 | 0.4112 | ||
[1] | Gemini 2.0 Flash | - | BM25 | 100 | 0.6807 | 0.4805 | 0.4650 | ||
[1] | RankGPT (gpt-4o-mini) | - | BM25 | 100 | 0.6868 | 0.4878 | 0.4703 | ||
[1] | RankGPTAPEER (gpt-4o-mini) | - | BM25 | 100 | 0.6695 | 0.4901 | 0.4514 | ||
[1] | LRL (gpt-4o-mini) | - | BM25 | 100 | 0.6720 | 0.4813 | 0.4599 |
[1] Sahel Sharifymoghaddam, Ronak Pradeep, Andre Slavescu, Ryan Nguyen, Andrew Xu, Zijian Chen, Yilin Zhang, Yidi Chen, Jasper Xian, and Jimmy Lin. RankLLM: A Python Package for Reranking with LLMs Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025), May 2025.
Activate Conda Environment:
conda create -n rz python=3.10 conda activate rz
All experimental runs shown in the above table can be programmatically executed based on the instructions below. To list all the experimental conditions:
python -m src.rank_llm.2cr.msmarco --collection v2-passage --list-conditions
These conditions correspond to the table rows above.
For all conditions, just show the commands in a "dry run":
python -m src.rank_llm.2cr.msmarco --collection v2-passage --all --display-commands --dry-run
To actually run all the experimental conditions:
python -m src.rank_llm.2cr.msmarco --collection v2-passage --all --display-commands
With the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.
To show the commands for a specific condition:
python -m src.rank_llm.2cr.msmarco --collection v2-passage --condition lrl --display-commands --dry-run
This will generate exactly the commands for a specific condition above (corresponding to a row in the table).
To actually run a specific condition:
python -m src.rank_llm.2cr.msmarco --collection v2-passage --condition lrl --display-commands
Again, with the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.
Finally, to generate this page:
python -m src.rank_llm.2cr.msmarco --collection v2-passage --generate-report --output msmarco-v2-passage.html
The output file msmarco-v2-passage.html should be identical to this page.