The two-click* reproduction matrix below provides commands for reproducing experimental results reported in a number of papers, denoted by the references in square brackets. Instructions for programmatic execution are shown at the bottom of this page (scroll down).
Multi-Pass | First-Stage Method | Top-k | TREC 2019 | TREC 2020 | ||||
---|---|---|---|---|---|---|---|---|
nDCG@10 | nDCG@10 | |||||||
[1] | RankVicuna 7B V1 | - | SPLADE++ EnsembleDistil | 100 | 0.7325 | 0.7458 | ||
[2] | RankZephyr 7B V1 - Full | - | SPLADE++ EnsembleDistil | 100 | 0.7781 | 0.8147 | ||
[2] | RankZephyr 7B V1 - Full | 3 | SPLADE++ EnsembleDistil | 100 | 0.7777 | 0.8031 | ||
[3] | Monot5 3B MSMARCO-10k | - | BM25 | 100 | 0.7173 | 0.6887 | ||
[3] | Duot5 3B MSMARCO-10k | - | BM25 | 100 | 0.7302 | 0.6913 | ||
[3] | Lit5Distill Large | - | BM25 | 100 | 0.7247 | 0.7049 | ||
[3] | RankVicuna 7B V1 | - | BM25 | 100 | 0.6790 | 0.6582 | ||
[3] | RankZephyr 7B V1 - Full | - | BM25 | 100 | 0.7365 | 0.7080 | ||
[3] | First Mistral | - | BM25 | 100 | 0.7294 | 0.7043 | ||
[3] | Qwen 2.5 7B Instruct | - | BM25 | 100 | 0.6987 | 0.6298 | ||
[3] | LLaMA 3.1 8B Instruct | - | BM25 | 100 | 0.6779 | 0.6326 | ||
[3] | Gemini 2.0 Flash | - | BM25 | 100 | 0.7362 | 0.6930 | ||
[3] | RankGPT (gpt-4o-mini) | - | BM25 | 100 | 0.7345 | 0.6841 | ||
[3] | RankGPTAPEER (gpt-4o-mini) | - | BM25 | 100 | 0.7312 | 0.6845 | ||
[3] | LRL (gpt-4o-mini) | - | BM25 | 100 | 0.7296 | 0.6807 |
[1] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models. arXiv:2309.15088, September 2023.
[2] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze! arXiv:2312.02724, December 2023.
[3] Sahel Sharifymoghaddam, Ronak Pradeep, Andre Slavescu, Ryan Nguyen, Andrew Xu, Zijian Chen, Yilin Zhang, Yidi Chen, Jasper Xian, and Jimmy Lin. RankLLM: A Python Package for Reranking with LLMs Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2025), May 2025.
Activate Conda Environment:
conda create -n rz python=3.10 conda activate rz
All experimental runs shown in the above table can be programmatically executed based on the instructions below. To list all the experimental conditions:
python -m src.rank_llm.2cr.msmarco --collection v1-passage --list-conditions
These conditions correspond to the table rows above.
For all conditions, just show the commands in a "dry run":
python -m src.rank_llm.2cr.msmarco --collection v1-passage --all --display-commands --dry-run
To actually run all the experimental conditions:
python -m src.rank_llm.2cr.msmarco --collection v1-passage --all --display-commands
With the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.
To show the commands for a specific condition:
python -m src.rank_llm.2cr.msmarco --collection v1-passage --condition bm25-default --display-commands --dry-run
This will generate exactly the commands for a specific condition above (corresponding to a row in the table).
To actually run a specific condition:
python -m src.rank_llm.2cr.msmarco --collection v1-passage --condition bm25-default --display-commands
Again, with the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.
Finally, to generate this page:
python -m src.rank_llm.2cr.msmarco --collection v1-passage --generate-report --output msmarco-v1-passage.html
The output file msmarco-v1-passage.html should be identical to this page.