MS MARCO V1 Passage Regressions

The two-click* reproduction matrix below provides commands for reproducing experimental results reported in a number of papers, denoted by the references in square brackets. Instructions for programmatic execution are shown at the bottom of this page (scroll down).

TREC 2019 TREC 2020 dev

AP
nDCG@10 R@1K
AP
nDCG@10 R@1K RR@10 R@1K
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-default.dl19.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-default.dl20.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-default.dev.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rm3-default.dl19.txt \
  --bm25 --k1 0.9 --b 0.4 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rm3-default.dl20.txt \
  --bm25 --k1 0.9 --b 0.4 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rm3-default.dev.txt \
  --bm25 --k1 0.9 --b 0.4 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rocchio-default.dl19.txt \
  --bm25 --k1 0.9 --b 0.4 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rocchio-default.dl20.txt \
  --bm25 --k1 0.9 --b 0.4 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rocchio-default.dev.txt \
  --bm25 --k1 0.9 --b 0.4 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --topics dl19-passage \
  --index msmarco-v1-passage \
  --output run.msmarco-v1-passage.bm25-tuned.dl19.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --topics dl20 \
  --index msmarco-v1-passage \
  --output run.msmarco-v1-passage.bm25-tuned.dl20.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --topics msmarco-passage-dev-subset \
  --index msmarco-v1-passage \
  --output run.msmarco-v1-passage.bm25-tuned.dev.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rm3-tuned.dl19.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rm3-tuned.dl20.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rm3-tuned.dev.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rocchio-tuned.dl19.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rocchio-tuned.dl20.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rocchio-tuned.dev.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-d2q-t5-default.dl19.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-d2q-t5-default.dl20.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-d2q-t5-default.dev.txt \
  --bm25 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-d2q-t5-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl19.txt \
  --bm25 --rm3 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl20.txt \
  --bm25 --rm3 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dev.txt \
  --bm25 --rm3 --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl19.txt \
  --bm25 --rocchio --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl20.txt \
  --bm25 --rocchio --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dev.txt \
  --bm25 --rocchio --k1 0.9 --b 0.4
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-default.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl19.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl20.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5 \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-d2q-t5-tuned.dev.txt \
  --bm25
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-d2q-t5-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl19.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl20.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dev.txt \
  --bm25 --rm3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rm3-d2q-t5-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl19.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics dl20 \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl20.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.d2q-t5-docvectors \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dev.txt \
  --bm25 --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bm25-rocchio-d2q-t5-tuned.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl19-passage-unicoil \
  --output run.msmarco-v1-passage.unicoil.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl20-unicoil \
  --output run.msmarco-v1-passage.unicoil.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics msmarco-passage-dev-subset-unicoil \
  --output run.msmarco-v1-passage.unicoil.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl19-passage \
  --encoder castorini/unicoil-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-pytorch.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl20 \
  --encoder castorini/unicoil-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-pytorch.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/unicoil-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-pytorch.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl19-passage \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-onnx.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics dl20 \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-onnx.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-onnx.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl19-passage-unicoil-noexp \
  --output run.msmarco-v1-passage.unicoil-noexp.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl20-unicoil-noexp \
  --output run.msmarco-v1-passage.unicoil-noexp.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics msmarco-passage-dev-subset-unicoil-noexp \
  --output run.msmarco-v1-passage.unicoil-noexp.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl19-passage \
  --encoder castorini/unicoil-noexp-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-noexp-pytorch.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl20 \
  --encoder castorini/unicoil-noexp-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-noexp-pytorch.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/unicoil-noexp-msmarco-passage \
  --output run.msmarco-v1-passage.unicoil-noexp-pytorch.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl19-passage \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-noexp-onnx.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics dl20 \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-noexp-onnx.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.unicoil-noexp \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder UniCoil \
  --output run.msmarco-v1-passage.unicoil-noexp-onnx.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.unicoil-noexp-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics dl19-passage \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-pytorch.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics dl20 \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-pytorch.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics msmarco-passage-dev-subset \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-pytorch.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics dl19-passage \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-onnx.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics dl20 \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-onnx.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-onnx.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics dl19-passage \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl19.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics dl20 \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl20.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics msmarco-passage-dev-subset \
  --encoder naver/splade-cocondenser-ensembledistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dev.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics dl19-passage \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl19.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics dl20 \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl20.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-ed-text \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder SpladePlusPlusEnsembleDistil \
  --output run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dev.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-ed-rocchio-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics dl19-passage \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-pytorch.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics dl20 \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-pytorch.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics msmarco-passage-dev-subset \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-pytorch.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics dl19-passage \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-onnx.dl19.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics dl20 \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-onnx.dl20.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-onnx.dev.txt \
  --hits 1000 --impact
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics dl19-passage \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl19.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics dl20 \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl20.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics msmarco-passage-dev-subset \
  --encoder naver/splade-cocondenser-selfdistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dev.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics dl19-passage \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl19.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics dl20 \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl20.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.splade-pp-sd-text \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder SpladePlusPlusSelfDistil \
  --output run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dev.txt \
  --hits 1000 --impact --rocchio
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.splade-pp-sd-rocchio-onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl19-passage --encoded-queries ance-dl19-passage \
  --output run.msmarco-v1-passage.ance.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.ance.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.ance.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.ance.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl20 --encoded-queries ance-dl20 \
  --output run.msmarco-v1-passage.ance.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.ance.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.ance.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.ance.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics msmarco-passage-dev-subset --encoded-queries ance-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.ance.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl19-passage \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.ance-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.ance-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.ance-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl20 \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.ance-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.ance-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.ance-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl19-passage \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-avg-prf-pytorch.dl19.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl20 \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-avg-prf-pytorch.dl20.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-avg-prf-pytorch.dev.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-avg-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl19-passage \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl19.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics dl20 \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl20.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.ance \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/ance-msmarco-passage \
  --output run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dev.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.ance-rocchio-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl19-passage \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl20 \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.sbert-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics msmarco-passage-dev-subset \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl19-passage \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl19.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl20 \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl20.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics msmarco-passage-dev-subset \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-avg-prf-pytorch.dev.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-avg-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl19-passage \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl19.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics dl20 \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl20.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.sbert \
  --topics msmarco-passage-dev-subset \
  --encoder sentence-transformers/msmarco-distilbert-base-v3 \
  --output run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dev.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.sbert-rocchio-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics dl19-passage --encoded-queries distilbert_kd-dl19-passage \
  --output run.msmarco-v1-passage.distilbert-kd.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics dl20 --encoded-queries distilbert_kd-dl20 \
  --output run.msmarco-v1-passage.distilbert-kd.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics msmarco-passage-dev-subset --encoded-queries distilbert_kd-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.distilbert-kd.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics dl19-passage \
  --encoder sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics dl20 \
  --encoder sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 \
  --topics msmarco-passage-dev-subset \
  --encoder sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl19-passage --encoded-queries distilbert_tas_b-dl19-passage \
  --output run.msmarco-v1-passage.distilbert-kd-tasb.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl20 --encoded-queries distilbert_tas_b-dl20 \
  --output run.msmarco-v1-passage.distilbert-kd-tasb.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics msmarco-passage-dev-subset --encoded-queries distilbert_tas_b-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.distilbert-kd-tasb.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl19-passage \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl20 \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics msmarco-passage-dev-subset \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl19-passage \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl19.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl20 \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl20.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics msmarco-passage-dev-subset \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dev.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-avg-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl19-passage \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl19.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics dl20 \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl20.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.distilbert-dot-tas_b-b256 \
  --topics msmarco-passage-dev-subset \
  --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco \
  --output run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dev.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.distilbert-kd-tasb-rocchio-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl19-passage --encoded-queries tct_colbert-v2-hnp-dl19-passage \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl20 --encoded-queries tct_colbert-v2-hnp-dl20 \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics msmarco-passage-dev-subset --encoded-queries tct_colbert-v2-hnp-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl19-passage \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl20 \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl19-passage \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl19.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl20 \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl20.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dev.txt \
  --prf-method avg --prf-depth 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-avg-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl19-passage \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl19.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics dl20 \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl20.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.tct_colbert-v2-hnp \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/tct_colbert-v2-hnp-msmarco \
  --output run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dev.txt \
  --prf-method rocchio --prf-depth 5 --rocchio-alpha 0.4 --rocchio-beta 0.6 --rocchio-topk 5
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-rocchio-prf-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage \
  fusion --alpha 0.06 \
  run    --threads 16 --batch-size 512 \
         --topics dl19-passage \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage \
  fusion --alpha 0.06 \
  run    --threads 16 --batch-size 512 \
         --topics dl20 \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage \
  fusion --alpha 0.06 \
  run    --threads 16 --batch-size 512 \
         --topics msmarco-passage-dev-subset \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage.d2q-t5 \
  fusion --alpha 0.1 \
  run    --threads 16 --batch-size 512 \
         --topics dl19-passage \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage.d2q-t5 \
  fusion --alpha 0.1 \
  run    --threads 16 --batch-size 512 \
         --topics dl20 \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.hybrid \
  dense  --index msmarco-v1-passage.tct_colbert-v2-hnp \
         --encoder castorini/tct_colbert-v2-hnp-msmarco \
  sparse --index msmarco-v1-passage.d2q-t5 \
  fusion --alpha 0.1 \
  run    --threads 16 --batch-size 512 \
         --topics msmarco-passage-dev-subset \
         --output run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.tct_colbert-v2-hnp-bm25d2q-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr \
  --topics dl19-passage \
  --encoder castorini/slimr-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr \
  --output run.msmarco-v1-passage.slimr.dl19.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.slimr.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.slimr.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.slimr.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr \
  --topics dl20 \
  --encoder castorini/slimr-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr \
  --output run.msmarco-v1-passage.slimr.dl20.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.slimr.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.slimr.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.slimr.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/slimr-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr \
  --output run.msmarco-v1-passage.slimr.dev.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.slimr.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.slimr.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr-pp \
  --topics dl19-passage \
  --encoder castorini/slimr-pp-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr-pp \
  --output run.msmarco-v1-passage.slimr-pp.dl19.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.slimr-pp.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.slimr-pp.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.slimr-pp.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr-pp \
  --topics dl20 \
  --encoder castorini/slimr-pp-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr-pp \
  --output run.msmarco-v1-passage.slimr-pp.dl20.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.slimr-pp.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.slimr-pp.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.slimr-pp.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.slimr-pp \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/slimr-pp-msmarco-passage \
  --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr-pp \
  --output run.msmarco-v1-passage.slimr-pp.dev.txt \
  --output-format msmarco --hits 1000 --impact --min-idf 3
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.slimr-pp.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.slimr-pp.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-distilbert \
  --topics dl19-passage \
  --encoder castorini/aggretriever-distilbert \
  --output run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-distilbert \
  --topics dl20 \
  --encoder castorini/aggretriever-distilbert \
  --output run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-distilbert \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/aggretriever-distilbert \
  --output run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.aggretriever-distilbert-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-cocondenser \
  --topics dl19-passage \
  --encoder castorini/aggretriever-cocondenser \
  --output run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-cocondenser \
  --topics dl20 \
  --encoder castorini/aggretriever-cocondenser \
  --output run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.aggretriever-cocondenser \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/aggretriever-cocondenser \
  --output run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.aggretriever-cocondenser-pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.openai-ada2 \
  --topics dl19-passage --encoded-queries openai-ada2-dl19-passage \
  --output run.msmarco-v1-passage.openai-ada2.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.openai-ada2.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.openai-ada2.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.openai-ada2.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.openai-ada2 \
  --topics dl20 --encoded-queries openai-ada2-dl20 \
  --output run.msmarco-v1-passage.openai-ada2.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.openai-ada2.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.openai-ada2.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.openai-ada2.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.openai-ada2 \
  --topics msmarco-passage-dev-subset --encoded-queries openai-ada2-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.openai-ada2.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.openai-ada2.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.openai-ada2.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.openai-ada2 \
  --topics dl19-passage --encoded-queries openai-ada2-dl19-passage-hyde \
  --output run.msmarco-v1-passage.openai-ada2-hyde.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 128 \
  --index msmarco-v1-passage.openai-ada2 \
  --topics dl20 --encoded-queries openai-ada2-dl20-hyde \
  --output run.msmarco-v1-passage.openai-ada2-hyde.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.openai-ada2-hyde.dl20.txt
Not available.
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.openai-text-embedding-3-large \
  --topics dl19-passage --encoded-queries openai-text-embedding-3-large-dl19-passage \
  --output run.msmarco-v1-passage.openai-text-embedding-3-large.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.openai-text-embedding-3-large \
  --topics dl20 --encoded-queries openai-text-embedding-3-large-dl20 \
  --output run.msmarco-v1-passage.openai-text-embedding-3-large.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.openai-text-embedding-3-large \
  --topics msmarco-passage-dev-subset --encoded-queries openai-text-embedding-3-large-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.openai-text-embedding-3-large.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.openai-text-embedding-3-large.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cosdpr-distil \
  --topics dl19-passage \
  --encoder castorini/cosdpr-distil \
  --output run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cosdpr-distil \
  --topics dl20 \
  --encoder castorini/cosdpr-distil \
  --output run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cosdpr-distil \
  --topics msmarco-passage-dev-subset \
  --encoder castorini/cosdpr-distil \
  --output run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.faiss-flat.pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw \
  --topics dl19-passage \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl19.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw \
  --topics dl20 \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl20.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dev.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw.onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw-int8 \
  --topics dl19-passage \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl19.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw-int8 \
  --topics dl20 \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl20.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.cosdpr-distil.hnsw-int8 \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder CosDprDistil \
  --output run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dev.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cosdpr-distil.lucene-hnsw-int8.onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --encoder-class auto \
  --encoder BAAI/bge-base-en-v1.5 --l2-norm --query-prefix "Represent this sentence for searching relevant passages:" \
  --index msmarco-v1-passage.bge-base-en-v1.5 \
  --topics dl19-passage \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl19.txt \
  --hits 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --encoder-class auto \
  --encoder BAAI/bge-base-en-v1.5 --l2-norm --query-prefix "Represent this sentence for searching relevant passages:" \
  --index msmarco-v1-passage.bge-base-en-v1.5 \
  --topics dl20 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl20.txt \
  --hits 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --encoder-class auto \
  --encoder BAAI/bge-base-en-v1.5 --l2-norm --query-prefix "Represent this sentence for searching relevant passages:" \
  --index msmarco-v1-passage.bge-base-en-v1.5 \
  --topics msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dev.txt \
  --hits 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.faiss-flat.pytorch.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw \
  --topics dl19-passage \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl19.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw \
  --topics dl20 \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl20.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dev.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw.onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw-int8 \
  --topics dl19-passage \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl19.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw-int8 \
  --topics dl20 \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl20.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.lucene \
  --threads 16 --batch-size 512 --dense --hnsw \
  --index msmarco-v1-passage.bge-base-en-v1.5.hnsw-int8 \
  --topics msmarco-passage-dev-subset \
  --onnx-encoder BgeBaseEn15 \
  --output run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dev.txt \
  --hits 1000 --ef-search 1000
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.bge-base-en-v1.5.lucene-hnsw-int8.onnx.dev.txt
Command to generate run on TREC 2019 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cohere-embed-english-v3.0 \
  --topics dl19-passage --encoded-queries cohere-embed-english-v3.0-dl19-passage \
  --output run.msmarco-v1-passage.cohere-embed-english-v3.0.dl19.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl19-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl19.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl19.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl19-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl19.txt
Command to generate run on TREC 2020 queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cohere-embed-english-v3.0 \
  --topics dl20 --encoded-queries cohere-embed-english-v3.0-dl20 \
  --output run.msmarco-v1-passage.cohere-embed-english-v3.0.dl20.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -l 2 -m map dl20-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl20.txt
python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl20-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl20.txt
python -m pyserini.eval.trec_eval -c -l 2 -m recall.1000 dl20-passage \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dl20.txt
Command to generate run on dev queries:
python -m pyserini.search.faiss \
  --threads 16 --batch-size 512 \
  --index msmarco-v1-passage.cohere-embed-english-v3.0 \
  --topics msmarco-passage-dev-subset --encoded-queries cohere-embed-english-v3.0-msmarco-passage-dev-subset \
  --output run.msmarco-v1-passage.cohere-embed-english-v3.0.dev.txt
Evaluation commands:
python -m pyserini.eval.trec_eval -c -M 10 -m recip_rank msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dev.txt
python -m pyserini.eval.trec_eval -c -m recall.1000 msmarco-passage-dev-subset \
  run.msmarco-v1-passage.cohere-embed-english-v3.0.dev.txt

References

Programmatic Execution

All experimental runs shown in the above table can be programmatically executed based on the instructions below. To list all the experimental conditions:

python -m pyserini.2cr.msmarco --collection v1-passage --list-conditions

These conditions correspond to the table rows above.

For all conditions, just show the commands in a "dry run":

python -m pyserini.2cr.msmarco --collection v1-passage --all --display-commands --dry-run

To actually run all the experimental conditions:

python -m pyserini.2cr.msmarco --collection v1-passage --all --display-commands

With the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.

To show the commands for a specific condition:

python -m pyserini.2cr.msmarco --collection v1-passage --condition bm25-default --display-commands --dry-run

This will generate exactly the commands for a specific condition above (corresponding to a row in the table).

To actually run a specific condition:

python -m pyserini.2cr.msmarco --collection v1-passage --condition bm25-default --display-commands

Again, with the above command, run files will be placed in the current directory. Use the option --directory runs/ to place the runs in a sub-directory.

Finally, to generate this page:

python -m pyserini.2cr.msmarco --collection v1-passage --generate-report --output msmarco-v1-passage.html

The output file msmarco-v1-passage.html should be identical to this page.